FRAUD DETECTION
REFERENCE ARCHITECTURE

1. Collect customer and transaction data from internal sources, apps and Snowflake Marketplace providers.
2. Use SQL and Snowpark to unify source formats, apply rules and other preparation for processing.
3. Make Feature Engineering easy using Snowpark ML to work with new and reference dataset features.
4. Train Fraud Detection models using Snowpark ML and store models in Snowpark ML Model Registry.
5. Deploy the trained model for use by other teams and their language of choice.
6. Call the model from SQL or Python to score and classify new transactions as they are received.
7. Provide a historical record of scoring and classification for analysts and customer care teams.
8. Update Fraud Detection data products including business curation, aggregation and prioritization.
9. Easily build compelling user experiences of the model and datasets using Streamlit.
10. Share and list data and apps to integrate with business processes, operations and marketplaces.

OBJECTIVE
Snowflake’s Data Cloud allows users to build holistic, enriched views of customer behaviour, enabling analysts to easily train accurate models that optimise identifying anomalies, detecting fraud and prioritising customer engagement.

RELATED CONTENT
Blogpost: Using Native Apps to Provide Collaborative Machine Learning