b

»o< snowflake’

N
1

Design Patterns for Building
Multi-Tenant Applications
on Snowflake

Contents

Introduction
Part One: Comparing Multi-Tenant Design Patterns
Multi-tenant table (MTT)
Object per tenant (OPT)
Account per tenant (APT)
Summarizing the three patterns
Part Two: Exploring Each Design Pattern
MTT design notes
Maintaining the entitlement table
Authenticating to Snowflake
Isolating working databases if needed
Isolating workloads as needed or pooling to save costs
Routing users to warehouses
OPT design notes
Using automation to create new tenants
OPT authentication and authorization considerations
Isolating ingestion/transformation databases in the OPT model
Incorporating OPT to facilitate multi-region data sharing
APT design notes
APT authentication considerations
APT ingestion/transformation considerations
Part Three: Evaluating Tenancy Models
Storage and security considerations
Encryption, isolation, and data protection considerations

Billing, resource utilization, and network policy considerations

db .
3¢ snowflake

o 0N AW W N DN

N N NN DN NN R R R R R R R R
N o0 o i D WOWON O VvV 0N N o dMw o

Page 1

Introduction

Multi-tenant Snowflake applications typically conform to one of three design patterns:

e Multi-Tenant Table (MTT): MTT consolidates tenants within a shared table or warehouse.
Centralizing tenants in single, shared objects enables tenants to share compute and other
resources efficiently.

e Object Per Tenant (OPT): OPT isolates tenants into separate tables, schemas, databases,
and warehouses. Although this approach allocates individual objects to tenants, the
application still operates within a single Snowflake account.

e Account Per Tenant (APT): APT isolates tenants into separate Snowflake accounts. Unlike
OPT, each tenant within the application has its own dedicated Snowflake account.

Tenancy models have different advantages regarding security, storage, compute, and connectivity,
and a hybrid approach may be needed to properly address these considerations. Hybrids between
tenancy models are common. For example, a design might use a multi-tenant table to consolidate
storage but allocate dedicated compute resources to each tenant, thereby forming an MTT/OPT
hybrid design.

This white paper has three parts:

e Part One helps data application builders understand the pros-and-cons and
costs-and-benefits of the various patterns

e Part Two describes each pattern in greater detail and offers guidance on the Snowflake
features required for proper implementation

e Part Three provides additional information to help you evaluate tenancy models based on
security, storage, and compute requirements

Part One: Comparing Multi-Tenant
Design Patterns

This section compares and contrasts the three patterns and describes the requirements that tend
to favor one design approach over the others.

Multi-tenant table (MTT)

MTT's chief characteristics are scalability and architectural simplicity.

e MTT isthe most scalable design pattern in terms of the number of tenants an application
can support. This approach supports apps with millions of tenants.

b
35S snowflake

e It hasasimpler architecture within Snowflake. Simplicity matters because object
proliferation makes managing myriad objects increasingly difficult over time. With MTT,
adding tenants does not cause the number of objects to grow, but adding tenants to OPT
and APT canresult in hundreds or thousands of objects being created within Snowflake.

From a cost standpoint, MTT is usually more cost-efficient because multiple customers utilize
shared compute and other resources more efficiently.

But MTT has a somewhat rigid requirement: To use MTT, an app's data model has to have the same
general shape across all tenants. Application builders can achieve slight variances using custom
columns that only apply to certain types of tenants, but this approach introduces sparsity into the
data.

Object per tenant (OPT)

OPT is a great fit if each tenant has a different data model. Unlike MTT, the tenant data shape can
be unique for each tenant. OPT does not scale as easily as MTT, however. OPT typically scales well
from tens to hundreds of tenants, but starts to become unwieldy when it includes thousands of
tenant databases.

Security can factor into the decision to use an OPT design pattern. Some customers prefer the
OPT model because they don't want to manage an entitlement table, secure views, or row-level
security with strong processes behind it. They are, however, comfortable using RBAC to control
who has specific access to a database.

Some apps that use the OPT model give customers their own dedicated compute resources to
satisfy contractual, security, or regulatory requirements.

Account per tenant (APT)

APT isolates tenants at the account level. Typically, customers have a strong security reason for
choosing this approach. For example, organizations bound by strict regulatory mandates may
choose this optionif:

e They need to implement a dedicated connection string per tenant
e They require security measures such as Bring Your Own Tool (BYOT)

e They want to use per-tenant IP restrictions at the account level

APT requires the customer to also implement OPT, which can support a huge variety of tenant
data shapes. In addition, APT introduces more scaling limitations—tenant counts in the tens to low
hundreds are typical, however, customers with higher tenant numbers exist. APT can become
unwieldy when managing thousands of tenant accounts.

b _
3¢ snowflake

Summarizing the three patterns

Table 1 summarizes the similarities and differences among the three design patterns.

Table 1: Design pattern similarities and differences

MTT OPT APT

Data model e Tenant dataneedsto e Tenant data shape can e Tenant data shape can

characteristics follow the same general be unique to each tenant be unique to each
shape. or similar across multiple tenant or similar

e Datais stamped with a tenants. across multiple
tenant_id, sowithina tenants.
row it's easy to tell what
tenant the data belongs
to.

Scalability e Scales from tens to e Scales from tens to e Scalesfrom tens to
millions of tenants and hundreds of tenants in low hundreds of
beyond, although upper typical deployments. tenantsin typical
scale limits are deployments.
unknown.

Security e Requires developers to e Enablescustomerswho e Isolatestenants,

concerns manage security, such as are comfortable using thereby reducing the
an entitlement table, RBAC toisolate tenants risk of mismanaging
secure views, or without requiring them security.
row-level security to manage entitlement e Allows for strict
settings. tables with strong security measures

e Requires application processes. (encryption keys, IP

owner to be proficient in allow lists,

RBAC and row-level better-than-RBAC

security. controls) by isolating
tenants by account.

e Allows for strict
network measures,
such as BYOT,
Snowflake Ul login,
and dedicated
connection string per
tenant.
% snowflake®

an

Table 2 lists notes and drawbacks to consider when evaluating design patterns.

Table 2: Design pattern notes and drawbacks

Notes

Drawbacks

b
35S snowflake

MTT

Pooling customers on
shared, scalable compute
saves money and is
simpler to operationalize.

Multi-region data sharing
can be a challenge, but
see Incorporating OPT to
facilitate multi-region data

sharing.

To improve performance
you might need to shard
large tables.

MERGE, UPDATE, and
auto-clustering
operations canbe a
challenge on very large
tables.

It's hard to determine
per-tenant storage costs
in a multi-tenant table.

OPT

Compute can be pooled or
isolated per tenant based
on customer goals. Pooled
compute frequently saves
money but increases the
possibility of contention
between tenants.

Creating objects within
Snowflake is easy, but
maintaining a consistent
state across many similar
objects is hard. As
numbers increase, keeping
objects in sync becomes
difficult.

Compute per tenant can
increase costs because
you lose the ability to
pool compute across
tenants.

Increased automation is
required to maintain and
version objects.

APT

Using this design
feels familiar for
customers who are
re-platforming from
alegacy database
platform.

Creating an account
within Snowflake is
easy, but
maintaining a
consistent state
across accounts is
hard.

Compute per tenant
can increase costs
because you lose
the ability to pool
compute across
tenants.

Increased
automation is
required to create
and manage
accounts and
objects.

Part Two: Exploring Each Design Pattern

MTT design notes

Note: Many of the concepts covered in this section apply to the OPT and APT models as well.

The logical diagram depicted in Figure 1 represents a fairly common application setup:

e Application users access tenant data via secure views in a serving database (highlighted in
red)

e An entitlements table controls which Snowflake users or roles have access to which tenants
e Secure views ensure application users only see their tenant rows

e Alltables are clustered by a tenant_id type column

To enforce that users can see only their tenant rows, tenants query through secure views, which
JOIN base tables to the entitlements table on tenant id.Common tables, where everybody
gets to see all the rows, use regular views pointed to the base tables.

3eg snowflake '
. ELT
Developer i SF A“m—iﬂﬁj ELT WH l

Developer WH Query OO OO0C000CO000000000C 0000000000000 00 5
. .

Application . -

: =|=|= =|=|= —

— =l=|z === ~

o= : === ¥ ’

Application Autharization

Customer A to Snowflake Session | . ?ﬂbgi\"g |ﬂ1:9b"‘ﬂﬂﬂﬂ Ingestion/Transformation :
ables ables Database v
e e N e e e Nava ey a s 5]

Application Authorization
to Snowflake Session

Customer B

. P I P -
¥ 4 N\
Customer C ' : : : ;
Pooled WH . =1=1=
Application Authorization :
| to Snowflake Session | ' Entitlements

9 L BEE Tabie e’

Customer D r : =l=l= w

: —'
Query : Secure Views -
. . by Role =1z Multi-tenant Serving .
Py Application Authorization ' ==z Database '
Customer 0 to Snowflake Session | ! '
- Dedicated ' Babea'a N

Ti

Customer D WH L s ;

Figure 1: A serving database with secure views ensures application users see only their tenant rows.

b
35S snowflake

Snowflake recommends creating a hierarchy of roles based on privilege and functional access,
with a role and user defined per tenant. Set the privileges for dedicated tenant roles by following

role-based hierarchy best practices.

Figure 2 depicts application setup at the schema level. Secure views occupy one schema, and base
tables and the entitlements table occupy a second schema to separate the privileges that
determine who can access what data. Secure tables and common tables help segregate developer
users and application users. There may also be instances where you want to create sandbox areas
for individual customers to do more sophisticated things, and you can use a schema per customer
to separate that as well. Users can be given default namespaces (database . schema) to further

direct access.
r T e e et e e e e e e et e e e e e e et s e e e e e e = e et e e e e R
oL Schema STG
qk ;.
-
g v grant usage on schema STG to role internal_dev . =1l -
= ¢+ grant all privileges on future tables in schema STG to role internal_dev J_ || = [o =lesle
] pumy pumy puy ey ey pu pumy pumy pu
] e P = ey pumy pumy pu
A
2
e : Staging Tables -
21 —
=
T —~
a1 Schema INT u
'
E : fTransformation
& 1 grant usage on schema INT te role internal dev . Database
- 1 grant all privileges on future tables in schema INT to role internal dev Jes]es|es d Bd ===z (LAKE)
5 b =|=|= === -=l=]=
o ! — v — e Ed Bl L Bad Bd
>
H o
@
=L Integration Tables
oo
S
=y
]
Cecacsacssaasanaas A EE s s s S EE S EEESE S S e S Sa Am An SS A R SS A S SSSAEsssssssssssssssssssash & & = s a2 s s mmaaa
> s e R e e e i e e e
B e Schema DW_T
JEEEEE .
s ooooo 1 grant usage on schema DW_T to role internal_dev
S @ uwowo ¢ grant select on future tables in schema DW to role internal dev === ===
i ivipal
sooooo =|=1= =|=|=
£33353 pumy puy puy puy puy
AB0DBD |
2R5555 Enlitlements Table Base Data
EEEEEE)
Rttt grant usage on schema DW_V to role custa_grpl (custb grpl..) *
= grant usage on schmea DW_V to role custd_grpl -]
veeoLw grant usage on schmea DW_V to role custd_grp2 | U
SRR =] grant select on view ABC_V to role custd_grpl -] - u
288800 grant select on view DEF_V to role custd_grp2 el Bl Gl
e ErE T grant select on views in schema DW_V to role custa_grpl (custb_grpl.. Multi-tenant Serving
oo o alter user <user> set default_namespace = DW.DW_V Secure Views Database
ScEcCccC b (DW)
PO Schema CUSTD_SBOX
222332 | grant usage on schema CUSTD_SBOX to role custd grpl
wwwwwnn | grant usage on schema CUSTD_SBOX to role custd grp2 - -l |)
it L R to role custd_grpl - -l pumy pumy pu
e | - e g -=l=]-
EEEEEE
adcaaas ! = — = = = = =
LLLLL
EEEEEE]
"‘ Customer Sandbox Tables

Figure 2: Schema-level view of database objects based on RBAC

Secureviews use the current role () parameter to filter the base table using a JOIN to the
entitlements table where the value of current role () matchesone or more rows inthe

entitlements table.

b
35S snowflake

In a data application you can implement secure views by user or by role.

Secure views based on CURRENT USER (see Figure 3) make sense if you have one database user
per tenant and you don't need fine-grained control of different users within the tenant.

A_TABLE
TENANT Ip| coL1 | coLz
100 ABC 24
100 DEF 58
200 a1 | 27
200 JKL 45
101 ABC 16

- If entitlements 1:1 or 1:n

create secure view a_sview as
select
a.tenant_id,
a.coll,
a.col2
from a_table a
join entitlements e
on a.tenant_id = e.tenant_id

where e.user_name = current_user();

- If entitlements n:1 or n:n

create secure view a_sview as
select

a.tenant_id,

a.coll,

a.col2
from a_table a
where a.tenant_id in (select
tenant_id from entitlements where
user_name = current_user());

A_SVIEW
CURRENT_USER() = 'CUSTA_USR1'

ENTITLEMENTS

100
100
101

200

B_TABLE
[Tenant 10| coL1 | coz |
CUSTA_USR1 100 1245 1.12
CUSTA_USR2 100 1415 1.24
CUSTA USR1 200 | 1714 | 1.69
lCUSTH,USR] 101 946 1.35 |

Tzrmrr,rn| coL1 J coLz TENANT_ID| coL1 coLz
100 ABC | 24 100 | 1245 1.12
100 DEF 58 100 | 1415 | 1.24
101 [ABC 16 101 [946 1.35

A_SVIEW
RRENT_USER() = 'CUSTA_USR2'

cul
TENANT_ID COL1 coL2
100 [ABC 24
100 DEF 58

cul

A_SVIEW
RRENT_USER() = 'CUSTB_USR1'

TENANT_ID COL1

200

200

GHI

JKL

coL2

27

45

A_SVIEW
CURRENT_USER{) = 'CUSTA_USR1"

A_SVIEW
CURRENT_USER() = 'CUSTA_USR2"

TENANT_ID| COL1 coLz
100 1245 1.12
100 1415 1.24

A_SVIEW
CURRENT_USER{) = 'CUSTB_USR1'

TENANT_ID| COL1 coLz

200 1714 1.69

Figure 3: Secure views based on CURRENT USER ()

- If entitlements 1:1 or 1:n

create secure view b_sview as
select

b.tenant_id,

b.col1l,

b.col2
from b_table b
join entitlements e
on b.tenant_id = e.tenant_id
where e.user_name = current_user()

- If entitlements n:1 or n:n

create secure view b_sview as
select

b.tenant_id,

b.coll,

b.col2
from b_table b
where b.tenant_id in (select
tenant_id from entitlements where
user_name = current_user());

Secure views based on CURRENT ROLE (see Figure 4) allow fine-grained entitlements between
application users. You can have multiple sets of privileges within a given tenant and selectively
assign privileges to tenant users, for example users who can write data into the sandbox versus

users who cannot.

b
35S snowflake

A_TABLE ENTITLEMENTS B_TABLE
o T 0 o o] cos | s
100 ABC 24 100 CUSTA_GRP1 100 1245 1.12
100 DEF 58 100 CUSTA_GRP2 100 1415 1.24
200 GHI 27 200 | CUSTB GRP1 200 | 1714 | 1.68
200 JKL 45 300 VCUSTC,GRPI 200 | 946 | 1.35
300 ABC 16
A_SVIEW B_SVIEW
CURRENT_ROLE() = 'CUSTA_GRP1' CURRENT_ROLE() = 'CUSTA_GRP1'
TENMIT_[DI coLa l coLz | [temant 10| coL1 | coz
100 ABC 24 [100 | 1245 | 1.12 |
100 DEF 58 100 1415 1.24
- If entitlements 1:1 or 1:n CURRENT_ROLET) = * CUSTA_aRP2" CURRENT_ROLET) = | CUSTA_GRP2' - If entitlements 1:1 or 1:n

create secure view a_sview as

TENANT_ID COL1 TENANT_ID cCOL1

create secure view b_sview as

select 4 bt po selgcr p
a.tenant_id, .tenant_id,
a.coll, 100 ABC 24 100 [1245 1.12 b.coll,
a.col2 100 DEF 58 100 1415 | 1.24 b.col2

from a_table a

join entitlements e

on a.tenant_id = e.tenant_id

where e.role_name = current_role();

A_SVIEW SVI
URRENT_ROLE() = 'CUSTB_GRP1'

from b_table b

join entitlements e

on b.tenant_id = e.tenant_id

where e.role_name = current_role();

B EwW
C CURRENT_ROLE() = 'CUSTB_GRP1'
- If entitlements n:1 or n:n T T - If entitlements n:1 or n:n
TENANT_ID COL1 coLz TENANT_ID| COL1 coLz

create secure view a_sview as create secure view b_sview as
select 200 GHI 27 200 1714 | 1.69 select

a.tenant_id, 1 b.tenant_id,

a.coll, 200 JKL 45 200 946 1.35 b.col1,

a.col2 . b.col2

from a_table a
where a.tenant_id in (select
tenant_id from entitlements where

from b_table b
where b.tenant_id in (select
tenant_id from entitlements where

A_SVIEW B_SVIEW
role_name = current_role()); CURRENT_ROLE() = 'CUSTC_GRP1' CURRENT_ROLE() = 'CUSTC_GRP1 role_name = current_role());

- Can also use current_user() TENANT_ID| coL1 I coLz | TENANT_ID| CoOL1 | coLz - Can also use current_user()

300 ABC 16

Figure 4: Secure views based on CURRENT ROLE ()

Maintaining the entitlement table

Application data security depends on the entitlements table working correctly, so managing the
entitlement table is a major priority for data application builders. Snowflake recommends starting
with the following best practices.

Regarding security:

e Lock down entitlement tables with restrictive permissions.

e Manage the entitlement table with a systematic process. Avoid poor practices such as
adding new customers by running single INSERT /UPDATE statements against the
entitlement tables.

e Eliminate human error by wrapping processing in procedures that are automated and have
controls in place. Procedures can execute either inside or outside of Snowflake.

e Tofindissues, run regular regression tests after entitlement table updates to test secure

view results against expected outcomes.
Regarding optimization:

e Tenants should have a unique numeric identifier (thatis,a tenant_id).

b
35S snowflake

e Cluster all transaction tables by tenant idand a meaningful date field, at minimum.
(Thereverse,date then tenant id,isalsofine.)

e Sortload dimension tables representing tenants initially, and use incrementing identifiers
for tenants.

e Despite the small size, cluster the entitlement table if there are a lot of users or roles per
tenant; otherwise sort load.

Table clustering is common in a multi-tenant model because each tenant typically can access only
its own slice of the data. The type of table and the data model (such as star schema or highly
denormalized) also play a role in determining which tables you need to cluster.

Sometimes you can do simple sort ordering when the table loads to make the data easy to access
and to help with partition pruning. But be aware that auto-clustering runs as a background service
and is not instantaneous. Depending on how frequently the data is updated and loaded within the
application, auto-clustering may not be enough and may require additional workarounds, such as
changing how data pipelines are structured.

b _
3¢ snowflake

LOGICAL STRUCTURE ([Micro-partition 1 Micro-partition 2 Micro-partition 3 Micro-partition 4
_ (rows 1-6) (rows 7-12) (rows 13-18) (rows 19-24)
2 A UK 1172 2 a 3 3 2 4 2 4 2 1 4
T | T 1 TENANT _1D
4 ¢ sP 1172
SRR RO o
3 [4 DE 11/2
2 8 DE | 11/2 A ¢ ¢ z 8| ¢ X z | v ¢ z Y
NAME J
3 A FR 11/2 B A C x A A B x A B x z
2 ¢ sP 1172
3 z e | 1 uk | sp | DE DE | UK | ML FRO| N sP RN SP
COUNTRY
2 | 8 | = 11/2 DE FR | sP FR | ML | ER sP | DE | UK sP | DE | UK
4 ¢ N 1172 ' ' ' . ') . .)
s * FR | 14 1/2 | 11/2 | 1172 1/2 | 11/2 | 11/2 11/2 | 11/2 | 11/2 11/3
| | T 1 DATE
1| A | N | s 12 |1/2 | 172 1/3 (1173 | 1/ AR
L] A FR 11/3 L
2 X R 1172
I I] J ALTER TABLE t1
4 z N 1172 CLUSTER BY (TEMANT ID,DATE);
2 ¥ sP 1172
; Micro-partition 5 Micro-partition 6 Micro-partition 7 Micro-partition 8
i . w | an (rows 1-6) (rows 7-12) (rows 13-18) (rows 19-24)
5 % DE 11/
. Py x| 137e T 1 1] 2 | 2 - E [3 3 | 3 Il
1 ¢ R 11/3 2 | | E)€ | s LS
4 z N 1174
. . * | 1174 e A 8| c A ¢ B z A | ox z A | x
. . = | s x| ¢ z A | ¢ c c | z x Y | 8
3 X DE 11/5 : ! ! ! ! : : !
2 z UK 11/5 couNTRY NL 5P FR | | UK 5P UK DE | UK | DE NL | FR | DE
DE | FR | SP UK | FR | DE PN N RSP SP
SELECT MNAME, COUNTRY FROM i1
WHERE TENANT ID = 4
AND DATE = '11/2'; 11/3 | 11/3 | 11/3 11/2 (11/2 (1172 11/2
DATE
1/2 |11/2 | 11/2 11/2 | 11/2 11/2 |13/2 | 11/2

Figure 5: Cluster tables by tenant idand DATE

Authenticating to Snowflake

The way application users connect to Snowflake is a little different from most other Snowflake
users. Because application users come through an application tier, users are typically unaware that

Snowflake exists, as shown in Figure 6.

db .
35S snowflake

Page 11

. : ELT
e i o Q l o
Devel WH
veloper QUETY pa s s e e cemamcaeaccaeaaaaaaaaa-2T .
' .
Application -
'
: =|=|= EEE —
| — ' === =iI=zl= H
. 4 \ Q“e—“'ry : === === N g
Application Authorization ' i . .
Customer A to Snowflake Session . Staging Integration Ingestion/Transformation
Tables Tables Database
LN ecccccscsncscnscsnnsenansesnsnsnsnsesnsosesnssessss 4
. Application Authorization ELT
Customer B - to Snowflake Session ‘
L hl
9 :
Customer C =1zi=
Pooled WH . = |= =
Application Authorization '
to Snowflake Session . Entitlements -
. v J - - Table [
Customer D : - - - u
! - - P
Query : Secure Views
. " by Role === Multi-tenant Serving
e . Application Authorization ' =1z Database
Austomer D - \ to Snowflake Session / '
¥ d ' Base Dala
N~ D ' Tables
Customer D WH
e I e e e e e R e B e e B e R Wl s

Figure 6: Users authenticate to Snowflake through the application tier.

Applications need to handle authentication to Snowflake on behalf of the user. There are multiple
ways to do authentication, but the following principles generally apply:

e Application users authenticate to the application as they normally would.

e Thereistypically a secrets manager at the application-tier level that stores credentials for
the corresponding Snowflake user. The application is programmed to obtain a Snowflake
session using one of several supported authentication methods.

e Usersare only authorized to query secure views and are only authorized to see their
tenant based on the user/role link to tenant_id.

Figure 7 shows an application that establishes a Snowflake session based on a secrets manager
lookup. Note that the application manages the key-pair user authentication flow and stores the
Snowflake user and session access token. Network policies control access to Snowflake from the
application tier over Private Link, which is optional. And, finally, role-based access controls (RBAC)
route users to default warehouses and databases, and allow users to access only the data that they
are permitted to see within the application.

b
35S snowflake

Secure network
PrivateLink A
6 J: connection

Application r=.A
. N
Store | ooooccocoooos - . 2|°|$ snowflake Assign user
. .
© e Snowflake user [NEGEEGTHNIN . B public key
= . =
Customer A . and token . ' z ![[alter user custa usri set rsa_public_key='HITSTjANBgkah ... ";
> : S g | o
. ' ' User Lo Network poli
' ' Fmmmm e -
Customer B . ; l i .
= . (7= OO OO O OIS A
-
. ! ' * get.snowflake.session : ' " Customer A-C
- - . . .
' ' . . : : WH Query ,
Customer C ' o ' - ccomococmoco oo o J . sl |use <umer
- 4.: App"f:a"on : f N N default Use proper -
* Authentication & * i ' o |role, prop =l=l=
. Authorization Conten Session . o Jarehouse. ZE1E] ——
! ' Passuser ¢ o an) o
. Loocontext
w0
. ! ! cmbv.‘dc:wd L ! Multi-tenant DB
app i
Custs D . . . with Secure Views
ustomer - "I ; needed . '
. ‘ . '
. ! L- 2 oo e e e e e e ea e J
9 : : :
Customer D | gt f
' . Customer D
. . ! Dedicated WH
Soocoooooc o . &

Figure 7: Obtaining and storing a user session via key-pair authentication

Isolating working databases if needed

Isolating working databases is optional. Some application builders directly load data into the
serving database and Snowflake points to the initial landing tables. But other builders need to run
transformations in Snowflake before serving data, in which case a best practice is to separate the
serving database from the working databases used for transformation or ingestion from outside
sources. The application can be configured to write data to both the serving database or the
working databases as appropriate for the application functionality.

Snowflake recommends separating databases to simplify application administration. For example,
it's easier to configure RBAC to control "what should be done where" and "who has access to
what" if databases are separate.

Regarding workload processing, you can do some of these processes offline if that makes sense for
the application, and then apply them to the serving database as appropriate.

b _
3¢ snowflake

b

o< snowflake

e B 1O ol
Developer - I l

Developer WH

Query e -y
'
Application v - .
' '
- =|=|= =l=|= -_— |
. -l py puy e u .
Que_.r:.f : ey ey s ey s IR 9 .
Application Authorization .)) .
Customer A to Snowflake Session | . Staging Integration Ingestion/Transformation
Tables Tables Dalabase .
. ‘ r

Application Authorization

to Snowflake Session

Pooled WH
Application Authorization

1o Snowflake Session

'
'
'
'
'
'
v
'
Query : Secure Views —=1=)
' by Role e o Multi-tenant Serving
Application Authorization ' === Database

Customer D to Snowflake Session {] !
- Base Data
'

Dedicated
Customer D WH Tables

Customer B

Customer C

Customer D

. q. q. B B

Figure 8: Separate the working databases used for transformation or ingestion from the service
database as needed for your application.

Isolating workloads as needed or pooling to save costs

Similar to database separation being a general best practice, workload separation based on the
type of workload is a good idea. Specific recommendations include:

e Give developers their own warehouse for development work

e Pool application users on a common multi-cluster warehouse or isolate them onto
dedicated warehouses based on application requirements

e Usedifferent warehouses for different application purposes

e [solate other workloads to their own warehouses

When it comes to tenants, app builders need to make decisions around whether to give tenants a
dedicated warehouse, versus pooling them on common warehouses or multi-cluster warehouses.
Cost will be a factor. You can pool dashboard queries more easily than ad hoc queries because
they're predictable. Ad hoc usage can introduce unexpected and unplanned expenses. Strict COGS
per tenant calculations are a reason to separate tenants into dedicated warehouses because
pooled heuristics are less precise. Some applications pool users by default but offer the option to
pay extra to get a dedicated warehouse.

b
35S snowflake

e
. 35$ snowflake
Developer ﬁ Auth l

Developer WH

L R “
Application -
— 5= ==l= —
. Ese =y =y = = e e
Application Authorization) .
Customer A to Snowflake Session | Staging Integration Ingestion/Transformation
Tables Tables Database
e R A a e R e R TS e i il e ‘ _____ o
. Application Authorization ELT
Customer B to Snawflake Session ¢
4 1 N
S 0O0d oI OCoOC0S 00000000 ICa0oobo0c- &
9 4y :
Customer C =iz
Pooled WH o |
Application Authorization T
| to Snowflake Session ' Entitlements -
9 = Table —
Customer D : | — H
' Summ
Query : Secure Views
. ' by Rale -l -l Multi-tenant Senving
o o Application Authorization . o o Database
ustomer to Snowflake Session .
Dedicated > Base Data .
Customer D WH 'L 1 J'

Figure 9: Separating workloads based on the type of workload is a best practice.

Routing users to warehouses

To make application management easier, it's essential to configure RBAC and default warehouses
in Snowflake to route users to the correct warehouses. Proper planning and up front configuration
will ensure that user lookups within the secrets manager and the application tier will
automatically route the user to the right database and the right warehouse.

The following guidance applies to routing users:

e Youcan grant roles the privilege to operate (modify) or use (run queries against) a given
warehouse

e Users can be configured to use a specific warehouse by default, but roles cannot

e Users with access to multiple warehouses can choose to use a warehouse upon
establishing a session or before query execution

b
35S snowflake

alter warehouse size as necessary
create new warehouse
manage permissions on warehouses

alter sizes on permissioned warehouses
create tabl
use only permissioned warehouses

Developer -

- Use A warehouse to read/write data]
Customer A]

. Use B warehouse to readiwrite data

" |
J

Customer B -

Ingestion/Transformation

Database
A
Query - - .*
\ iy YV R R Query
POOLED_WH
\ T via Secure View .
N .
i

via Sec!

Customer D [Use dedicated warehouse to readfwrite]

Customer D
User 2

[-- give permission to dev role to use and operate on internal
|warahuuse

grant usage on warehouse internal wh to role internal dev;
|grant operate on warehouse interal wh to role internal_dev;

|

-- set default wh for internal developers

alter user int usr_a set default warehouse = internal wh;

|
|- or use specific warehouse on connection/query
luse warehouse internal wh;

Figure 10: Configuring RBAC and default warehouses in Snowflake makes managing the application

tier easier.

b
35S snowflake

Y

CUST_D_WH

(7= give permission to customer role to use
grant usage on warehouse pooled wh to role
Igrant usage on warehouse pooled wh to role
|grant usage on warehouse pooled_wh to role
Igrant usage on warehouse cust_d wh to role

l-- set default wh to customer users
lalter user custa usril set default warehouse

Ialter user custd usrl set default warehouse
lalter user custd usr2 set default warehouse

Multi-tenant Serving

ure View Database

customer dedicated warehouse
custa grpl;
custb_grpl;
custc_grpl;
custd_grpl;

= pooled wh;

= cust_d wh;
wh

OPT design notes

OPT enables you to isolate tenant data by database, schema, and table, and use RBAC to control
which user or role can see or query an object. Separating customers into their own databases is
the most common practice (see Figure 11), because it is the easiest, cleanest isolation level, but
some app builders separate customers into dedicated tables, for example, in embedded analytics
use cases in which data applications create a report table per tenant.

Which objects to use for isolation depends on factors such as your data pipeline design, your
software development life cycle process, the consistency of your data shape, and more. How many
total tenants do you expect to have? How many tables will you use? Think through the features
you plan to use, such as replication and zero-copy cloning. (Replication can only be done at the
database level. And, while zero-copy cloning can take place at all three levels, it's cleaner to clone a
database.) All of these factors and more come into play when you implement OPT.

9 Q elr
Developer . SF Auth. G] ELT WH l
Developer WH Query o -
' '
Application)
-l - -l H
. =l=|= === e’
. Application Authorization : : —' -
Customer A to Snowflake Session | » Staging Integration Ingestion/Transformation
Query . Tables Tables Database .
L I I I R R I f 4
. Application Authorization I
Customer B . to Snowflake Session ELT ELT ELT ELT
. ~ \
Customer € Custefner C Custofmer B Customer A
Pooled WH Qudries Queries Qudries
) - Y 4
| _Application Au\horlzmnn__f
. to Snowflake Session - - - -
—_ A AL
cmerro (S — ' e’ S’
Customer D _ _ u u
Queries Customer D Customer C Customer B Customer A
. Application Auth " Database Dalabase Database Database
pplication Authorization
Customer D . to Snowflake Session | ‘/
Dedicated
Customer D WH

Figure 11: Isolating customers into their own databases is the most common OPT pattern.

Using automation to create new tenants

If you implement the OPT or APT pattern, use automation to create new tenants (see Figure 12).
Automation can be written inside or outside of Snowflake to create new tenants based on a
template. Your template should cover databases, schemas, tables, compute, security, and anything
else new tenants require. Automation is necessary because when you start to get into the

b
35S snowflake

hundreds and thousands of objects, tenant creation and ongoing enhancements become too
unwieldy to manage any other way.

Third-party products, such as Flyway and others, can help synchronize template updates with
existing tenants.

Template

1
-1
Pt

NN
|
1
111

L1
|
1
131
T1T
|
1
il

A

sl

Tenant 1

©3
&

Tenant 2

©3
&

Tenant 3

©3
&

Tenant 4

©3
&

Tenant N

Figure 12: Use automation to create and synchronize tenants when implementing either OPT or
APT.

Authenticating and authorizing

OPT authentication and authorization is similar to MTT (see Authenticating to Snowflake), but with
OPT, routing users to the right databases becomes even more important.

The routing process is similar to what is described in Routing users to warehouses (see Figure 13),
but users are routed to different objects because the context changes relative to MTT. When done
properly, user lookup within the secrets manager and application tier automatically routes the
user to the right database and the right warehouse.

b
35S snowflake

https://flywaydb.org/

9 Q elr
Developer - SF Auth. ELT WH
Developer WH Query S, « =
Application -
. === bad b Ed U
/ /—.‘\ ' =1=1= o o u
. —
. Application Autharization - '
Customer A to Snowflake Session . Staging Integration Ingestion/Transformation
Query . Tables Tables Database
M cececeacsncscssasssananannnasnnans }. J
. Application Authorization I
Customer B . to Snowflake Session ELT ELT ELT ELT
Customer C Custofmer C Customer B Custamer A
Pooled WH Qudrnies Quéries Qudries
Application Authorization T
. to Snowflake Session - - - -
— ' ' | —'
omcnro (] " ' ' v’
Customer D - _
Queries Customer D Customer C Customer B Customer A
. — . Database Database Database Database
Cus D Application Authorization
il . \ to Snowflake Session
§ o
Customer D WH

Figure 13: OPT authentication is unchanged from MTT, but routing users to the right databases
becomes even more important.

Isolating ingestion/transformation databases in the OPT model

When planning how to isolate your serving database from your working
(ingestion/transformation) database, consider how your data will fan out to and fan in from tenant
databases for common processing. Frequently, running separate workloads on a separate,
per-tenant basis will cost more than consolidating the workloads into a single instance. For
example, if you settle on multiple tables per tenant and each has its own pipeline, the cost will
likely be higher than if you manage a single transformation process in acommon data store that
application users cannot access. If necessary, after transformation you can distribute data into
multiple tenant-specific objects or store data in a single, shared, serving database.

To optimize efficiency and cost, consider hybrid models, such as the hybrid OPT/MPT model
described above.

b
35S snowflake

v

9 O elr
Developer . SF Auth. Q] ELT WH J
D I WH
aoper Query r- _f ‘.\
Application - -
! Y -l H
. === z|=|= '
: —
. Application Authorization . - !
Customer A 1o Snowflake Session | [Staging Integration Ingestion/Transformation
Query ' Tables Tables Database '
Ceflecccanncnnasncsanscannnanasnanns }. ¥
. Application Authorization [[I]
Customer B - to Snowflake Session k ELT ELT ELT ELT
Customer C Customer C Cuslemer B Customer A
Poaoled WH Quadries Qugries Qugries
f A
| _Application Authorization |
. to Snowflake Session ’ - - ’
owemnr] T ' ' —'
Queries Customer D Customer C Customer B Customer A
. o) Database Database Database Database
Cust D Application Aulhonznlmn_
pund - to Snowflake Session
Dedicated
Customer D WH

Figure 14: Tenant data can be ingested and transformed through one working database and fanned
out to tenant serving databases.

Incorporating OPT to facilitate multi-region data sharing

As noted previously, multi-region data sharing can be a challenge for the MTT model. If you need
to share datain cloud/region pairs other than your primary one, and you do not want to replicate
all tenant data to all cloud/region pairs, consider incorporating OPT into your MTT design.

Because Snowflake supports replication at the entire database level, it's not possible to send only
certain tenant slices from a multi-tenant database somewhere else. While it's possible to replicate
an entire multi-tenant table to all clouds and regions where it's required, over time this design will
become unmanageable as data sizes and the number of tenants grow. For example, Figure 15
shows a multi-tenant, multi-CSP app design. Customer D shares data on GCP, but it does not make
sense to replicate Customer D's data on Azure if no one accesses it there.

Note: If you have a data sharing use case, consider using Snowflake Data Marketplace to take
advantage of the latest features.

b
35S snowflake

e
Gy

e

Staging Integration Ingestion/Transformation
Query Tables Tables Database
K e e s e mccececeeseeeeeeee..nmm J: J
ElI.T ELT ELT ELT
Custgmer C Customer B Cust T A

Pooled WH Qudries Qudries Qudries
Y

.

(
(«

Customer D
Queries Customer D Customer C Customer B Customer A
Database Database Database Database

Dedicated
Customer D WH

I

\J
a) Google Cloud aWS_? A Azure

Figure 15: If you do not want to replicate all tenant data to all cloud/region pairs, consider
incorporating OPT into your MTT design.

b
35S snowflake

APT design notes

With the APT model, there is typically one Snowflake account, one warehouse, and one database
per tenant.

There can be exceptions. For example:

e Multiple tenants can share an account to form a hybrid of APT and MTT (see Figure 16).

e There might be an additional administrative warehouse for data loading or administrative
activities, depending on whether the data is going out to the account through data sharing,
or if some form of ETL or ELT is used to do additional processing within the tenant account.
For example, some applications load the data and don't need to do anything further in the
tenant account because it's done elsewhere.

e Many APT designs can rely on single-cluster warehouses. A heavily used application may
require many clusters, including multi-cluster warehouses.

& snowflake e
. ELT
o - o ﬁ o l
Developer WH geny ., -
: -
—1=1= === -_—
- fum -] '
' p— py = =y e U .
. . pu -l=]= \ g .
Customer & : Staging Integration Ingestion/Transformation :
. Tables Tables Database .
' '
L s snssas i s R EaEasEERaEN R J. s
.’ [! ! —)
Customer B ELT or Share ELT or Share ELT or Share ELT or Share
L~
¥ e [- - -
R | u—q —' — —'
. Customer A Customer B Customer C Customer D
Dalabase Database Database Database
Customer D .
Quer(\ Quer{\ Duez\ Qu
. +load Query +Load Query +Load QuUeY H az Qugry
Admin User Admin User Admin User Admin User
WH WH WH WH WH WH WH WH
L 4 !
-~ SFAuth
SF Auth————/

SF Auth.

SF Auth.

Figure 16: Multiple tenants can share an account to form a hybrid of APT and MTT.

b
35S snowflake

Authenticating

With APT, authenticating via the application tier largely works the same as with MTT and OPT.
The key difference is that the account URL changes per tenant. It's also possible for users to login
to their Snowflake account directly, either through the Ul or a BYOT solution.

N

g snowflake e
. ELT
Developer - SF Auth. Q l ELT WH l
Develaper WH geny R — 4 n
: -
o O B [N . u
' = = Py ey e .
! === -=l= —) '
9 : -—
—— . Staging Integration Ingestion/Transformation
. Tables Tables Database .
' '
ks cEE RS ESSESEFSFESSEERESEREEE l. 4
.’ i .l J —]
Customer B ELT or Share ELT or Share ELT or Share ELT or Share
Customer € .7 —' b —' '
. Customer A Customer B Customer C Customer D
Database Database Database Database
Customer D .
Query Query ng(\ Qugfy
. +Load Query +Load Query +tLoad Queny sibad ARV
e SoRelife e IREo e
Admin User Admin User Admin User Admin User
WH WH WH WH WH WH WH WH
[[[
P

SF Auth.
SF Auth.
SF Auth.
SF Auth.

Figure 17: Sometimes data application builders decide not to authenticate users in the application

tier and instead require users to log in to their Snowflake accounts directly, either through the Ul or a
BYOT solution.

b
35S snowflake

Ingesting and transforming data

As mentioned previously, applications typically use a central account to manage the working
databases used for ingestion from outside sources or transformation.

You can share tenant data with tenant accounts using Snowflake Secure Data Sharing. This can
also be done with an MTT or OPT approach.

You could also use ELT or Snowflake replication to materialize data in the tenant accounts.

g snowflake e
. ELT
Developer - ———————SF Auth 4"0—' ELT WH l
Developer WH guery O OO OU O OO0 L TG LG SO0 OO G A o
-
-l=]= -] u
s -] - - 1
Customer A Staging Integration Ingestion/Transformation .
' Tables Tables Database g
' '
ks ssssssscnssssassaansssness= I. 4
9 ! ! |]
Customer B ELT or Share ELT or Share ELT or Share ELT or Share
- " " " .
Customer € F —' — —' —
. Customer A Customer B Customer C Customer D
Database Database Database Database
Customer D .
Queré‘\ Oxwr{\ {\ Qu
. +Load Query +Load Query Luad Gy az Query
| SeXelifeXeoINFo e
Admin User Admin User Ad Imin USEI ,Admm Use!
WH WH WH WH
SF Auth T
SF Autl
SF Auth
SF Auth.

Figure 18: Data can pass to the account through an ETL/ELT process, or through Secure Data
Sharing in which the data is directly loaded into the accounts.

b
35S snowflake

Part Three: Evaluating Tenancy Models

You should evaluate all three tenancy models, but Snowflake recommends starting with the MTT
pattern. It's generally instructive to first evaluate if the MTT pattern will work—and, if not, why.

Storage and security considerations

Encryption
key per
tenant

required?

RBAC can
isolate
tenants?

RLS can
isolate
tenants?

Strong legal
isolation
rules?

I want to build an
app on Snowflake

Yes

Yes

No Yes

Tenants can
bring their
own tool?

Yes APT

No
APT

Yes
| Data

No > STI'UCll:J res
are unique
er tenant?

enants can
login to the
Snowflake
ur?

Figure 19: Flowchart for evaluating storage and security requirements. OPT here refers to
databases, schemas, and tables (not virtual warehouses and compute).

Decisions hinge on:

e Contractual obligations that dictate how data should be stored and encrypted
e Regulatory obligations that dictate how data should be stored and encrypted
e InfoSec standards on how data should be stored and encrypted

e Application owner's perspective on the enforcement of database RBAC

e Application owner's perspective on the enforcement of row-level security through
entitlement tables and views

e How customers access the application:
o Through an application UI?
o Through the Snowflake UI?
o Through a BYOT solution?
e How consistent data shapes (data models) are across customers

b
35S snowflake

Encryption, isolation, and data protection considerations

e Tri-secret Secure (Bring Your Own Key) is available at only the account level in Snowflake.

e Snowflake uses a hierarchy of encryption keys at the account, table, and file level to
encrypt data-at-rest and prevent data from being accessed between accounts (except data

sharing).

e Snowflake is a multi-tenant service, and the cloud object store is a multi-tenant service, so
datais not truly isolated at the public cloud level, but encryption creates the isolation.

e Databases and schemas are largely logical constructs; they don’t physically separate data.

I want to build an
app on Snowflake

Strong legal
isolation
rules?

No

Tenants can
bring their
own tool?

No

enants can
login to the

Snowflake
ur?

No

Storage rules

dictate APT? No

Network
policies on
compute
required?

enant cache
on shared

compute
allowed?

No

No

Do you need
strict COGS
per tenant?

No

Do you need
to prevent
tenant
contention?

Figure 20: Flowchart for evaluating compute and security requirements. OPT means one virtual
warehouse per tenant where MTT refers to tenants on a pooled virtual warehouse.

Decisions hinge on:

e Contractual obligations that dictate how tenants should be isolated on raw compute.

e Regulatory obligations that dictate how tenants should be isolated on raw compute.

e InfoSec standards on how tenants should be isolated on raw compute.

e Network policy requirements. Will user-based network policies work? Or do you have
more complex requirements that require account-based policies?

e |[fvirtual warehouse cache constitutes data that must be isolated.

e How COGS are managed per tenant or billed back to the customer.
(Calculating COGS per tenant is more straightforward when each tenant has its own
compute resources. If tenants share compute resources, you can use a heuristic to

b _
3¢ snowflake

calculate COGS per tenant, but it's not as precise. Some apps need the precision, and some
are fine with a reasonable approximation.)

e How customers access the application:

o Through an application UI?
o Through the Snowflake UI?
o Through a BYOT solution?

e How many tenants could use a single virtual warehouse concurrently.

Billing, resource utilization, and network policy considerations

e Snowflake network policies (IP allow lists) can be applied only at the account or user level.

e Snowflake virtual warehouses cache data from object stores temporarily for whole or
partial reuse in subsequent queries. RBAC and secure view rules still apply.

e Snowflake compute billing is done at the virtual warehouse level. Calculating per-query,
per-user, or per-tenant costs can be inexact if tenants share compute.

e Snowflake virtual warehouses do not allow for resource limits per user or per tenant.

About Snowflake

Snowflake delivers the Data Cloud—a global network where thousands of organizations mobilize
data with near-unlimited scale, concurrency, and performance. Inside the Data Cloud,
organizations unite their siloed data, easily discover and securely share governed data, and
execute diverse analytic workloads. Wherever data or users live, Snowflake delivers a single and
seamless experience across multiple public clouds. Snowflake’s platform is the engine that powers
and provides access to the Data Cloud, creating a solution for data warehousing, data lakes, data
engineering, data science, data application development, and data sharing. Join Snowflake
customers, partners, and data providers already taking their businesses to new frontiers in the
Data Cloud. Snowflake.com.

b _
3¢ snowflake

